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Contractions

Let (X, d) be a metric space. A map F : X → X is said to be Lip-
schitzian if there exists a constant α ≥ 0 with

(1.1) d(F (x), F (y)) ≤ αd(x, y) for all x, y ∈ X.

Notice that a Lipschitzian map is necessarily continuous. The smallest
α for which (1.1) holds is said to be the Lipschitz constant for F and is
denoted by L. If L < 1 we say that F is a contraction, whereas if L = 1,
we say that F is nonexpansive.
For notational purposes we define Fn(x), x ∈ X and n ∈ {0, 1, 2, . . .},

inductively by F 0(x) = x and Fn+1(x) = F (Fn(x)).
The first result in this chapter is known as Banach’s contraction prin-

ciple.

Theorem 1.1 Let (X, d) be a complete metric space and let F : X → X

be a contraction with Lipschitzian constant L. Then F has a unique fixed
point u ∈ X. Furthermore, for any x ∈ X we have

lim
n→∞Fn(x) = u

with

d(Fn(x), u) ≤ Ln

1− L
d(x, F (x)).

Proof We first show uniqueness. Suppose there exist x, y ∈ X with
x = F (x) and y = F (y). Then

d(x, y) = d(F (x), F (y)) ≤ Ld(x, y),

therefore d(x, y) = 0.
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2 Contractions

To show existence select x ∈ X. We first show that {Fn(x)} is a
Cauchy sequence. Notice for n ∈ {0, 1, . . .} that

d(Fn(x), Fn+1(x)) ≤ Ld(Fn−1(x), Fn(x)) ≤ · · · ≤ Ln d(x, F (x)).

Thus for m > n where n ∈ {0, 1, . . .},
d(Fn(x), Fm(x)) ≤ d(Fn(x), Fn+1(x)) + d(Fn+1(x), Fn+2(x))

+ · · ·+ d(Fm−1(x), Fm(x))

≤ Ln d(x, F (x)) + · · ·+ Lm−1 d(x, F (x))

≤ Ln d(x, F (x))
[
1 + L+ L2 + · · ·]

=
Ln

1− L
d(x, F (x)).

That is for m > n, n ∈ {0, 1, . . .},

(1.2) d(Fn(x), Fm(x)) ≤ Ln

1− L
d(x, F (x)).

This shows that {Fn(x)} is a Cauchy sequence and since X is complete
there exists u ∈ X with lim

n→∞Fn(x) = u. Moreover the continuity of F
yields

u = lim
n→∞Fn+1(x) = lim

n→∞F (Fn(x)) = F (u),

therefore u is a fixed point of F . Finally letting m → ∞ in (1.2) yields

d(Fn(x), u) ≤ Ln

1− L
d(x, F (x)).

Remark 1.1 Theorem 1.1 requires that L < 1. If L = 1 then F need
not have a fixed point as the example F (x) = x + 1 for x ∈ R shows.
We will discuss the case when L = 1 in more detail in Chapter 2.

Another natural attempt to extend Theorem 1.1 would be to suppose
that d(F (x), F (y)) < d(x, y) for x, y ∈ X with x 
= y. Again F need not
have a fixed point as the example F (x) = ln(1 + ex) for x ∈ R shows.
However there is a positive result along these lines in the following the-
orem of Edelstein.

Theorem 1.2 Let (X, d) be a compact metric space with F : X → X

satisfying

d(F (x), F (y)) < d(x, y) for x, y ∈ X and x 
= y.

Then F has a unique fixed point in X.



Chapter 1 3

Proof The uniqueness part is easy. To show existence, notice the map
x �→ d(x, F (x)) attains its minimum, say at x0 ∈ X. We have x0 =
F (x0) since otherwise

d(F (F (x0)), F (x0)) < d(F (x0), x0)

– a contradiction.

We next present a local version of Banach’s contraction principle. This
result will be needed in Chapter 3.

Theorem 1.3 Let (X, d) be a complete metric space and let

B(x0, r) = {x ∈ X : d(x, x0) < r}, where x0 ∈ X and r > 0.

Suppose F : B(x0, r) → X is a contraction (that is, d(F (x), F (y)) ≤
Ld(x, y) for all x, y ∈ B(x0, r) with 0 ≤ L < 1) with

d(F (x0), x0) < (1− L) r.

Then F has a unique fixed point in B(x0, r).

Proof There exists r0 with 0 ≤ r0 < r with d(F (x0), x0) ≤ (1 − L)r0.
We will show that F : B(x0, r0) → B(x0, r0). To see this note that if
x ∈ B(x0, r0) then

d(F (x), x0) ≤ d(F (x), F (x0)) + d(F (x0), x0)

≤ Ld(x, x0) + (1− L)r0 ≤ r0.

We can now apply Theorem 1.1 to deduce that F has a unique fixed
point in B(x0, r0) ⊂ B(x0, r). Again it is easy to see that F has only
one fixed point in B(x0, r).

Next we examine briefly the behaviour of a contractive map defined
on Br = B(0, r) (the closed ball of radius r with centre 0) with values
in a Banach space E. More general results will be presented in Chapter
3.

Theorem 1.4 Let Br be the closed ball of radius r > 0, centred at zero,
in a Banach space E with F : Br → E a contraction and F (∂Br) ⊆ Br.
Then F has a unique fixed point in Br.

Proof Consider

G(x) =
x+ F (x)

2
.



4 Contractions

We first show that G : Br → Br. To see this let

x� = r
x

‖x‖ where x ∈ Br and x 
= 0.

Now if x ∈ Br and x 
= 0,

‖F (x)− F (x�)‖ ≤ L ‖x− x�‖ = L (r − ‖x‖),

since x− x� =
x

‖x‖ (‖x‖ − r), and as a result

‖F (x)‖ ≤ ‖F (x�)‖+ ‖F (x)− F (x�)‖
≤ r + L(r − ‖x‖) ≤ 2r − ‖x‖.

Then for x ∈ Br and x 
= 0

‖G(x)‖ =
∣∣∣∣
∣∣∣∣x+ F (x)

2

∣∣∣∣
∣∣∣∣ ≤ ‖x‖+ ‖F (x)‖

2
≤ r.

In fact by continuity we also have

‖G(0)‖ ≤ r,

and consequently G : Br → Br. Moreover G : Br → Br is a contraction
since

‖G(x)−G(y)‖ ≤ ‖x− y‖+ L‖x− y‖
2

=
[1 + L]

2
‖x− y‖.

Theorem 1.1 implies that G has a unique fixed point u ∈ Br. Of course
if u = G(u) then u = F (u).

Over the last fifty years or so, many authors have given generalisations
of Banach’s contraction principle. Here for completeness we give one
such result. Its proof relies on the following technical result.

Theorem 1.5 Let (X, d) be a complete metric space and F : X → X a
map (not necessarily continuous). Suppose the following condition holds:

(1.3)




for each ε > 0 there is a δ(ε) > 0 such that if
d(x, F (x)) < δ(ε), then F (B(x, ε)) ⊆ B(x, ε);
here B(x, ε) = {y ∈ X : d(x, y) < ε}.

If for some u ∈ X we have

lim
n→∞ d(Fn(u), Fn+1(u)) = 0,

then the sequence {Fn(u)} converges to a fixed point of F .
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Proof Let u be as described above and let un = Fn(u). We claim that
{un} is a Cauchy sequence.
Let ε > 0 be given. Choose δ(ε) as in (1.3). We can choose N large

enough so that

d(un, un+1) < δ(ε) for all n ≥ N.

Now since d(uN , F (uN )) < δ(ε), then (1.3) guarantees that

F (B(uN , ε)) ⊆ B(uN , ε),

and so F (uN ) = uN+1 ∈ B(uN , ε). Now by induction

F k(uN ) = uN+k ∈ B(uN , ε) for all k ∈ {0, 1, 2, . . .}.
Thus

d(uk, ul) ≤ d(uk, uN ) + d(uN , ul) < 2ε for all k, l ≥ N,

and therefore {un} is a Cauchy sequence. In addition there exists y ∈ X

with lim
n→∞un = y.

We now claim that y is a fixed point of F . Suppose it is not. Then

d(y, F (y)) = γ > 0.

We can now choose (and fix) a un ∈ B(y, γ/3) with

d(un, un+1) < δ(γ/3).

Now (1.3) guarantees that

F (B(un, γ/3)) ⊆ B (un, γ/3),

and consequently F (y) ∈ B(un, γ/3). This is a contradiction since

d(F (y), un) ≥ d(F (y), y)− d(un, y) > γ − γ

3
=

2γ
3
.

Thus d(y, F (y)) = 0.

Theorem 1.6 Let (X, d) be a complete metric space and let

d(F (x), F (y)) ≤ φ(d(x, y)) for all x, y ∈ X;

here φ : [0,∞) → [0,∞) is any monotonic, nondecreasing (not necessar-
ily continuous) function with lim

n→∞φn(t) = 0 for any fixed t > 0. Then
F has a unique fixed point u ∈ X with

lim
n→∞Fn(x) = u for each x ∈ X.
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Proof Suppose t ≤ φ(t) for some t > 0. Then φ(t) ≤ φ(φ(t)) and
therefore t ≤ φ2(t). By induction, t ≤ φn(t) for n ∈ {1, 2, . . .}. This is a
contradiction. Thus φ(t) < t for each t > 0.
In addition,

d(Fn(x), Fn+1(x)) ≤ φn(d(x, F (x))) for x ∈ X,

and therefore

lim
n→∞ d(Fn(x), Fn+1(x)) = 0 for each x ∈ X.

Let ε > 0 and choose δ(ε) = ε− φ(ε). If d(x, F (x)) < δ(ε), then for any
z ∈ B(x, ε) = {y ∈ X : d(x, y) < ε} we have

d(F (z), x) ≤ d(F (z), F (x)) + d(F (x), x) ≤ φ(d(z, x)) + d(F (x), x)

< φ(d(z, x)) + δ(ε) ≤ φ(ε) + (ε− φ(ε)) = ε,

and therefore F (z) ∈ B(x, ε). Theorem 1.5 guarantees that F has a
fixed point u with lim

n→∞Fn(x) = u for each x ∈ X. Finally it is easy to
see that F has only one fixed point in X.

Remark 1.2 Note that Theorem 1.1 follows as a special case of The-
orem 1.6 if we choose φ(t) = Lt with 0 ≤ L < 1.

It is natural to begin our applications of fixed point methods with
existence and uniqueness of solutions of certain first order initial value
problems. In particular we seek solutions to

(1.4)
{

y′(t) = f(t, y(t)),
y(0) = y0,

where f : I × Rn → Rn and I = [0, b]. Notice that (1.4) is a system of
first order equations because f takes values in Rn.
We begin our analysis of (1.4) by assuming that f : I × Rn → Rn is

continuous. Then, evidently, y ∈ C1(I) (the Banach space of functions
u whose first derivative is continuous on I and equipped with the norm
|u|1 = max{supt∈I |u(t)|, supt∈I |u′(t)|}) solves (1.4) if and only if y ∈
C(I) (the Banach space of functions u, continuous on I and equipped
with the norm |u|0 = supt∈I |u(t)|) solves

(1.5) y(t) = y0 +
∫ t

0

f(s, y(s)) ds.
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Define an integral operator T : C(I) → C(I) by

Ty(t) = y0 +
∫ t

0

f(s, y(s)) ds.

Then the equivalence above is expressed briefly by

y solves (1.4) if and only if y = Ty, T : C(I) → C(I).

In other words, classical solutions to (1.4) are fixed points of the integral
operator T . We now present a result known as the Picard–Lindelöf
theorem.

Theorem 1.7 Let f : I × Rn → Rn be continuous and Lipschitz in y;
that is, there exists α ≥ 0 such that

|f(t, y)− f(t, z)| ≤ α |y − z| for all y, z ∈ Rn.

Then there exists a unique y ∈ C1(I) that solves (1.4).

Proof We will apply Theorem 1.1 to show that T has a unique fixed
point. At first glance it seems natural to use the maximum norm on
C(I), but this choice would lead us only to a local solution defined on a
subinterval of I. The trick is to use the weighted maximum norm

‖y‖α = |e−αty(t)|0
on C(I). Observe that C(I) is a Banach space with this norm since it
is equivalent to the maximum norm, that is,

e−αb|y|0 ≤ ‖y‖α ≤ |y|0.
We now show that T is a contraction on (C(I), ‖ · ‖α). To see this let
y, z ∈ C(I) and notice

Ty(t)− Tz(t) =
∫ t

0

[f(s, y(s))− f(s, z(s))] ds for t ∈ I.

Thus for t ∈ I,

e−αt|(Ty − Tz)(t)| ≤ e−αt
∫ t

0

αeαse−αs|y(s)− z(s)| ds

≤ e−αt
(∫ t

0

αeαs ds

)
‖y − z‖α

≤ e−αt
(
eαt − 1

) ‖y − z‖α
≤ (1− e−αb)‖y − z‖α,
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and therefore

‖Ty − Tz‖α ≤ (
1− e−αb

) ‖y − z‖α.
Since 1−e−αb < 1, the Banach contraction principle implies that there is
a unique y ∈ C(I) with y = Ty; equivalently (1.4) has a unique solution
y ∈ C1(I).

Now we relax the continuity assumption on f and extend the notion
of a solution of (1.4) accordingly. We want to do this in a way that
preserves the natural equivalence between (1.4) and the equation y = Ty,
which was obtained by integrating. To this end we follow the ideas of
Carathéodory and make the following definitions.

Definition 1.1 A function y ∈ W 1,p(I) is an Lp-Carathéodory solution
of (1.4) if y solves (1.4) in the almost everywhere sense on I; hereW 1,p(I)
is the Sobolev class of functions u, with u absolutely continuous and
u′ ∈ Lp(I).

Definition 1.2 A function f : I × Rn → Rn is an Lp-Carathéodory
function if it satisfies the following conditions:

(c1) the map y �→ f(t, y) is continuous for almost every t ∈ I;
(c2) the map t �→ f(t, y) is measurable for all y ∈ Rn;
(c3) for every c > 0 there exists hc ∈ Lp(I) such that |y| ≤ c implies

that |f(t, y)| ≤ hc(t) for almost every t ∈ I.

If f is an Lp-Carathéodory function, then y ∈ W 1,p(I) solves (1.4) if
and only if

y ∈ C(I) and y(t) = y0 +
∫ t

0

f(s, y(s)) ds.

In fact (c1) and (c2) imply that the integrand on the right is measurable
for any measurable y, and (c3) guarantees that it is integrable for any
bounded measurable y. The stated equivalence now is clear. Therefore
just as in the continuous case,

(1.4) has a solution y if and only if y = Ty, T : C(I) → C(I).

Theorem 1.8 Let f : I × Rn → Rn be an Lp-Carathéodory function
and Lp-Lipschitz in y; that is, there exists α ∈ Lp(I) with

|f(t, y)− f(t, z)| ≤ α(t)|y − z| for all y, z ∈ Rn.

Then there exists a unique y ∈ W 1,p(I) that solves (1.4).
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Proof The proof is similar to Theorem 1.7 and will only be sketched
here. Let

A(t) =
∫ t

0

α(s) ds.

Then A′(t) = α(t) for a.e. t. Define

‖y‖A =
∣∣∣e−A(t)y(t)

∣∣∣
0
.

The norm is equivalent to the maximum norm because

e−‖α‖1 |y|0 ≤ ‖y‖A ≤ |y|0, where ‖α‖1 =
∫ b

0

|α(t)| dt.

Thus (C(I), ‖ · ‖A) is a Banach space and use of the Banach contraction
principle, essentially as in the proof of Theorem 1.7, implies that there
exists a unique y ∈ C(I) with y = Ty. It follows that (1.4) has a unique
Lp-Carathéodory solution on I.

Notes Most of the results in Chapter 1 may be found in the classical
books of Dugundji and Granas [55], Goebel and Kirk [77] and Zeidler
[191].

Exercises

1.1 Show that a contraction F from an incomplete metric space into
itself need not have a fixed point.

1.2 Let (X, d) be a complete metric space and let F : X → X be such
that FN : X → X is a contraction for some positive integer N .
Show that F has a unique fixed point u ∈ X and that for each
x ∈ X, lim

n→∞Fn(x) = u.

1.3 Using the result obtained in Exercise 1.2, give an alternative proof
for the Picard–Lindelöf theorem (Theorem 1.7).

1.4 Let Br be the closed ball of radius r > 0, centred at zero, in a
Banach space E with F : Br → E a contraction and F (−x) =
−F (x) for x ∈ ∂Br. Show F has a fixed point in Br.

1.5 Let U be an open subset of a Banach space E and let F : U → E

be a contraction. Show that (I − F )(U) is open.
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1.6 Let (X, d) be a complete metric space, P a topological space and
F : X × P → X. Suppose F is a contraction uniformly over P

(that is, for each x, y ∈ X, d(F (x, p), F (y, p)) ≤ Ld(x, y) for all
p ∈ P ) and is continuous in p for each fixed x ∈ X. Let xp be the
unique fixed point of Fp : X → X, where Fp(x) = F (x, p). Show
that p �→ xp is continuous.

1.7 Let k : [0, 1]× [0, 1]× R → R be continuous with

|k(t, s, x)− k(t, s, y)| ≤ L |x− y|
for all (t, s) ∈ [0, 1]× [0, 1] and x, y ∈ R (here L ≥ 0 is a constant)
and v ∈ C[0, 1].

(a) Show that

u(t) = v(t) +
∫ t

0

k(t, s, u(s)) ds, 0 ≤ t ≤ 1,

has a unique solution u ∈ C[0, 1].
(b) Choose u0 ∈ C[0, 1] and define a sequence of functions {un}

inductively by

un+1(t) = v(t) +
∫ t

0

k(t, s, un(s)) ds, n = 0, 1, . . . .

Show that the sequence {un} converges uniformly on [0, 1] to
the unique solution u ∈ C[0, 1].

1.8 Let (X, d) be a complete metric space and let φ : X → [0,∞) be
a map (not necessarily continuous). Suppose

inf{φ(x) + φ(y) : d(x, y) ≥ γ} = µ(γ) > 0 for all γ > 0.

Show that each sequence {xn} in X, for which lim
n→∞φ(xn) = 0,

converges to one and only one point u ∈ X.

1.9 Let (X, d) be a complete metric space and let F : X → X be
continuous. Suppose φ(x) = d(x, F (x)) satisfies

inf{φ(x) + φ(y) : d(x, y) ≥ γ} = µ(γ) > 0 for all γ > 0,

and that inf
x∈X

d(x, F (x)) = 0. Show that F has a unique fixed

point.

1.10 If in Theorem 1.6 the assumptions on φ are replaced by φ :
[0,∞) → [0,∞) is upper semicontinuous from the right on [0,∞)
(that is, lim sups→t+ φ(s) ≤ φ(t) for t ∈ [0,∞)) and satisfies



Chapter 1 11

φ(t) < t for t > 0. Show that F has a unique fixed point u ∈ X

with limn→∞ Fn(x) = u for each x ∈ X.

1.11 Let T be a map of the metric space (X, ρ) into itself such that, for
a fixed positive integer n,

ρ(Tnx, Tny) ≤ αnρ(x, y) for x, y ∈ X;

here α is a positive real number. Show that the function σ defined
by

σ(x, y) := ρ(x, y) +
1
α
ρ(Tx, Ty) + · · ·+ 1

αn−1
ρ(Tn−1x, Tn−1y)

is a metric on X and T satisfies

σ(Tx, Ty) ≤ ασ(x, y) for x, y ∈ X.




